Circulants and root location of derivatives of polynomials

Olga Kushel, Mikhail Tyaglov*
School of Mathematical Sciences, Shanghai Jiao Tong University
Email: tyaglov@sjtu.edu.cn
With use of the so-called one-rank perturbation method introduced by Yu. Barkovsky we obtain a curious properties of circulant matrices and improve a theorem by W. Cheung and T. Ng (former de Bruin and Sharma's conjecture) to the following one:
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the roots of a polynomial p of degree $n \geqslant 2$, and let w_{1}, w_{2}, \ldots, w_{n-1} be the roots of its derivative p^{\prime}. If $\sum_{j=1}^{n} \lambda_{j}=0$, then

$$
\sum_{k=1}^{n-1}\left|w_{k}\right|^{4} \leqslant \frac{n-4}{n} \sum_{j=1}^{n}\left|\lambda_{j}\right|^{4}+\frac{1}{n^{2}}\left(\sum_{j=1}^{n}\left|\lambda_{j}\right|^{2}\right)^{2}+\frac{1}{n^{2}}\left|\sum_{j=1}^{n} \lambda_{j}^{2}\right|^{2},
$$

where equality holds if, and only if, all λ_{j} lie on a straight line passing through the origin of the complex plane.

We also extend this fact by giving an estimate to $\sum_{k=1}^{n-1}\left|w_{k}\right|^{4}$ for arbitrary complex polynomials. Some applications to orthogonal polynomials of this fact will be discussed in the talk.

